
 Plugin Development: Routes
207 Jul 18, 2024 Plugin Development 0 64

Routes allow you to create additional pages in the system that can
only be accessed when the plugin is active. All of your routes must be
placed in one or several PHP files in the Routes folder. You can
register a route for any HTTP verb, the most common Router methods
are get(), post(), put() and delete().

Predefined Route Files

The following filenames have special meaning within the Routes folder
and will inherit specific attributes:

Filename Attributes
frontend.php Authenticated routes for the frontend. Routes defined in this file will also be inaccessible when maintenance

mode is enabled.
unauthenticated.php Unauthenticated routes for the frontend. Routes defined in this file will also be inaccessible when maintenance

mode is enabled.
operator.php Authenticated operator panel routes. Routes defined in this file will be prefixed with your Settings > Admin

Folder name.
settings.php / plugin.php /
widget.php

Authenticated operator panel routes. Routed defined in this file will be prefixed by /admin/plugin/name (see
above Settings > Admin Folder) and also be affected by the plugin permission system.

api.php Authenticated API routes. Routes defined in this file are not prefixed by a locale.
nolocale.php The same functionality as Other Route Files except the locale is not prefixed to each route.

CSRF Tokens

POST, PUT and DELETE routes in any of the above predefined route
files require the a CSRF token for the request to be processed
successfully. This can be added to forms with
the csrf_field or csrf_token helper functions.

<form method="POST" action="/route"> {{ csrf_field() }} <!--
 Outputs: <input name="_token" type="hidden" value=

https://docs.supportpro.vn/category/customisation/plugin-development/61/
https://docs.supportpal.com/current/Core+General+Settings
https://docs.supportpal.com/current/Core+General+Settings
https://docs.supportpal.com/current/#OtherRouteFiles

"rzV9ynHksMChagph6DpQJTY3tLQaRSyggQeM1Z9e"> --> ...</form>

<form method="POST" action="/route"> <input type="hidden"
 name="_token" value="{{ csrf_token() }}" /> ...</form>

Other Route Files

Files with names other than those listed in the above table do not
inherit any attributes. You're free to create whatever routes you
require, for example unauthenticated routes.

Defining Routes

A very simple route looks like this.

$router->get('settings', ['as' =>
 'plugin.helloworld.settings', function () { return 'Hello World'; }]);

The first parameter of the method is the URI, and this is relative to the
plugin URL in the operator panel. For example if your help desk is
hosted at http://domain.com/support/ then the above route would
correspond
to http://domain.com/support/admin/plugin/helloworld/settings.

The second parameter is an array of attributes for the route, the 'as'
key allows you to name the route which makes it easier to use in
controllers and views. The name needs to be unique to not conflict
with any other routes, and we recommend to start your routes with
'plugin.pluginname' to ensure this doesn't happen.

A closure was used in the above example for simplicity, allowing to
define what should be shown on the route in this file, but we
recommend to instead use the 'uses' key to define a controller action
that is called when the route is matched. A controller action is simply a
function in a controller file and this promotes keeping the code clean
by ensuring all logic is placed in the controllers. Below are the
example routes included in the skeleton plugin that display the settings
page and handle updating the settings, these call
the getSettingsPage and updateSettings functions in the main
controller.

Routes/plugin.php

<?php$router->get('settings', ['as' =>
 'plugin.helloworld.settings', 'uses' =>
 'Addons
PluginsHelloWorl
dControllersHelloWorld@getSetting
sPage']);$router->post('settings', ['as' =>
 'plugin.helloworld.settings.update', 'uses' =>
 'AddonsPluginsHelloWorldControllersHelloWorld@updateSettings']);

More options and documentation on routing is available at the Laravel
website.

Language Detection

If you make use of Multilingual Content, language detection is in place
which will attempt to detect the locale and translate available content.
For example, if you have Spanish enabled and your custom plugin
route is https://domain.com/support/helloworld/myroute then the
following options are available:

https://laravel.com/docs/6.x/routing
https://laravel.com/docs/6.x/routing
https://docs.supportpal.com/current/Multilingual+Content

URL Language
https://domain.com/es/support/helloworld/myroute Spanish
https://domain.com/support/helloworld/myroute?lang=es Spanish
https://domain.com/support/helloworld/myroute Default Language
For API routes, you must use the lang parameter to set a language
other than the system default, e.g. https://domain.com/support/api/plug
in/helloworld/myroute?lang=es.

Accessing Named Routes

Routes can be accessed via their defined name under the as attribute
described above. For example, to redirect to the plugin settings page,
defined above, in a controller you would use:

Redirect::route('plugin.helloworld.settings')

To link to the plugin Hello World settings page in a view, you would
use:

{{ route('plugin.helloworld.settings') }}

Next Section: Languages

Online URL:
https://docs.supportpro.vn/article/plugin-development-routes-207.html

Powered by TCPDF (www.tcpdf.org)

https://docs.supportpal.com/current/Plugin+Development+Languages
https://docs.supportpro.vn/article/plugin-development-routes-207.html
http://www.tcpdf.org

